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Using the Nelander's form of the virial theorem and its further modification, 
we show that the method of momentum electron density proposed previously 
for uniform scaling processes of polyatomic systems is applicable to a wide 
range of nuclear rearrangement problems, in which bond lengths or bond 
angles may concern in a complicated way. The use of experimental Compton 
profile is also mentioned as a basic quantity in this approach. The present 
development  is illustrated by an application of the method to the bending 
process in a triatomic system. 
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1. Introduction 

In a previous paper [1], we have proposed a method of momentum electron 
density which permits to clarify the origin of nuclear rearrangements,  such as 
molecular geometries and chemical reactions, in terms of the concept in momen- 
tum ( p - )  space instead of the usual one in coordinate ( r - )  space. The approach 
has been motivated by the fact of equivalent ability of the two variables, position 
r and momentum p, in describing quantum-mechanical systems [2]. Applying 
the ordinary virial theorem (see e.g. [3]) to a uniform scaling process [4-6] such 
as a totally symmetric stretching mode, we have derived three sets of rigorous 
expressions for total energy and its gradient of a polyatomic system using the 
momentum electron density P(P) as a basic physical quantity. It has been then 
suggested that the contractive and expansive behaviours of p(p) form an impor- 
tant guiding principle in understanding and predicting the nature of nuclear 
rearrangements in p-space. 
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Furthermore, we have recently shown [7] that a rigorous relation between the 
energy and the momentum density can also be deduced from the integrated 
Hellmann-Feynman theorem with respect to the electron mass [8, 9], and that 
the relation is also applicable to the study of nuclear isotope effect if the nuclear 
mass, instead of the electron mass, is taken as a parameter. 

The proposed method of momentum density has been applied to the o'(lscrg and 
2po',) and r and 3d~rg) states of H~ system, and the processes of these 
attractive and repulsive interactions have been analyzed in detail based on the 
behaviour of momentum density [10, 11]. In these studies, it has been clarified 
that the required density information can be reduced from the three-dimensional 
p(p) to the one-dimensional radial momentum density I(p) without loss of 
generality and exactness of the approach [ 10]. Parallelism between the b ehaviours 
of I(p) and Compton profile Y(q) has also been pointed out [11]. 

The purpose of this paper is to extend the applicability of the momentum density 
approach to processes other than the uniform scaling. Using the Nelander's form 
[12] of the virial theorem and its further modification, we show that the approach 
can be applied to various kinds of nuclear rearrangement processes including, 
for example, the bending and antisymmetric-stretching processes in molecular 
geometries and the formation and breaking processes of several bonds in chemical 
reactions. In this development, no approximations are introduced and the exact- 
ness of our basic equations are preserved. The guiding principle of contraction 
and expansion for the behaviour of momentum density is also valid. The 
difference of the present treatment from the previous one for the uniform scaling 
is that the optimization of several internal coordinates is newly required. We 
also show that all the basic equations in our approach can be rewritten by using 
the experimentally-observed Compton profile Y(q) (see [13-15] for reviews) as 
a fundamental physical quantity. The same guiding principle holds for the 
behaviour of J(q) as for those of p(p) and I(p). Consequently, either of p(p), 
I(p), or J(q) is shown to be an acceptable quantity in constructing and developing 
the momentum density approach. 

These theoretical developments are presented in the next section. The results 
are illustrated in Sect. 3 for the bending process in a triatomic system. 

2. Applicability of Momentum Density Approach 

2.1. Uniform Scaling Process 

For the sake of later reference, we here outline the derivation of basic equations 
of the momentum density approach for uniform scaling processes [1]. 

The polyatomic virial theorem in ordinary form [3] 

T(R) +E(R) +~  RA[OE(R)/ORA] = 0 (1) 
A 

with T and E being the kinetic and total energies, respectively, and R-:--{RA} 
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the nuclear coordinates is reduced to [4-6] 

r(s) + E(s) + s[dE(s)/ ds] = 0, (2) 

if we consider a uniform scaling process Fl=sFl0 of an arbitrary reference 
conformation F10. The scale factor s varies from 0 (united atom limit) to oo 
(separated atoms limit). Solving Eq. (2) and using T(s)= ~ dp(p2/2)p(p; s), we 
obtain three formulas which rigorously connect E with p(p), 

E ( s )=  I dp (p2/2){(e/s)fs~ds'[p(p;s')-p(p;oe)]-p(p;oo)}, (3a) 

E ( s )=  I dp(p2/2){ -(1/s) IoSdS'P(P; S')l + Vnn(S), (3b) 

E ( s )=  I dp(p2/2){(1/s)IsSeds'p(p;s')-(Se/S)p(p;Se)}, (3c) 

where p stands for the momentum vector of an electron, p = [Pl, and Vn, the 
nuclear repulsion potential. Eqs. (3b) and (3c) are obtained respectively by 
imposing the kinetic field normalization condition (~ods'[T(s')-T(oo)] = 
sV,,(s)) [5] and the equilibrium condition (dE/dsl . . . .  =0) on Eq. (3a). The 
corresponding expressions for the force F are immediately obtained as a function 
of p(p) by the definition F =- -dE/ds. These basic equations can also be deduced 
from the integrated Hellmann-Feynman theorem with respect to the electron 
mass [7]. 

The three Eqs. (3a-c) are characterized by the range of integration about the 
scale parameter s. They are respectively convenient to investigate the interaction 
process starting from the separated atoms (Eq. (3a)), the change from the united 
atom (Eq. (3b)), and the change around the equilibrium conformation (Eq. (3c)). 
Note that in Eqs. (3a) and (3c), the contribution of V~n is implicitly included in 
the integral term of O(P). 

2.2. Other Processes: Present Development 
The reduction of the polyatomic virial theorem (1) to Eq. (2) occupies a crucial 
step in formulating our method of momentum density. For general processes of 
nuclear rearrangements other than the uniform scaling, it seems difficult to 
simplify Eq. (1) to the form of Eq. (2). Therefore, we start from the Nelander's 
form [12] of the virial theorem instead of the ordinary form (1). This treatment 
enables us to generalize the momentum density approach to various rearrange- 
ment problems. The uniform scaling process is included as a special case. 

The polyatomic virial theorem of Nelander [12] is given by 

T(R, e )+E(R,  e )+  E R,[OE(R, e)/oRi] = 0, (4) 
i=1 

where {R, 0} are the minimal set of internal coordinates consisting of bond lengths 
IR = {Rb R2 . . . . .  R~} and bond angles 0 = {01, 02 . . . . .  0m} which are sufficient to 
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specify the conformation of a given molecular system. When m = 0 and there 
are no angular variables, Eq. (4) becomes the Parr-Brown form [16] of the virial 
theorem. 

By imposing some conditions, Eq. (4) can be reduced to simpler forms tractable 
in our approach. In the following, we discuss two of such methods of reduction, 
which are referred to as Methods (A) and (B). 

Method (A). Treat the bond length Rj under consideration as an independent 
variable and optimize the other bond lengths {Ri} (i # ]) so that the total energy 
is extremum for a given Rj. Since OE/oRi]R~=R o = 0 (i #/'), Eq. (4) then takes the 
form of Eq. (2); 

r(Ri) + E(Rj) + Rj[ dE(Rj)/ dRj] = 0, (5) 

where T(Ri) and E(Rj) respectively denote T(Ri; {R/~ 6) and E(Ri; {R/~ e). 
Replacing s with Ri, we can therefore apply all the basic equations (3a-c) to 
this Ri-path. Note that in some cases the range of Rj value may be different 
from that of the scale factor s, [0, oe), and modification may be needed for the 
region of integration. 

When there is only one bond length in the employed set of internal coordinates, 
the above-mentioned procedure of optimization is unnecessary and this bond 
length R play an equivalent role as the scale factor s. Namely, Method (A) 
includes the treatment for uniform scaling processes as a special case of n = 1. 

Some of nuclear rearrangement problems to which the momentum density 
approach becomes applicable by Method (A) are (a) stretching of a particular 
bond, (b) change in bond angle (by examining the length RAC corresponding to 
the angle <ABC),  (c) change in out-of-plane angle and internal rotation (by 
examining some relevant length as in (b)), (d) reaction process whose reaction 
coordinate is a formation (or breaking) of a particular bond, and (e) long-range 
and van der Waals forces. 

Method (B). For a given set of angles e, optimize all bond lengths FI so that 
oE/oR~[R,=R o = 0. Then the virial theorem (4) takes its simplest form, 

E(e ;  R ~ = - T ( e ;  R~ (6a) 

and the energy-momentum density relation is given by 

E(e) = - I  dp (p2/2)p(p; e), (6b) 

as in the atomic case. 

Since the energy is given as a function of bond angles, this method may be useful 
to study the angular problem in molecular geometries (see e.g. (b) and (c) of 
the above discussion). The method can also be applied to intra-molecular re- 
arrangement reactions such as A B C  ~ CAB by treating the angle < ABC as a 
reaction coordinate. 
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When compared with Method (A), Method (B) has the advantage that the latter 
does not include the integral terms like ~ dsp(p; s). In Method (B), however, 
the force F is not represented by the momentum density p(p; e), but requires 
its gradient ap(p; 0)/00i. 

Eq. (6), as well as Eqs. (3a) and (3c), implicitly includes the contribution of the 
nuclear repulsion potential. Furthermore, these equations constitute additive 
partitionings of the total energy E into orbital components within the framework 
of independent particle models. Based on this characteristic of Eq. (6), Takahata 
and Parr [17] gave a re-examination of the Walsh rule [18] for H20 molecule 
using the orbital kinetic energies. 

The simplification by Methods (A) and (B) is also valid for the cases where 
bond lengths R and bond angles 9 are not explicit variables. Let us consider a 
linear transformation of coordinates, (R1, R2 . . . . .  Rn)  ---)($1, $2 . . . . .  Sn) and 
(01, 02 . . . . .  Om)~(Sn+I,S~+2 . . . . .  S,+m), where the variables R and 0 are 
assumed to be transformed without mixing. Examples of the new coordinates S 
may be found in symmetry and normal coordinates. After some manipulation, 
we obtain a modification of Eq. (4), 

T(S)+E(S)+  ~ S,[OE(S)/OS~] = 0, (7) 
i = 1  

which is again a form subject to the application of Methods (A) and (B). By the 
use of this modified virial theorem (7), the momentum density approach further 
extends its applicability to the problem of nuclear rearrangements in which 
several bonds or angles concern through a coordinate S~. The antisymmetric 
stretching in the molecular vibration is a simple example of this extended 
applicability. 

Thus, we see that the approach of momentum density applies not only to the 
uniform scaling process but also to various kinds of nuclear rearrangement 
processes where several bond lengths or bond angles may participate in a complex 
manner. The virial theorem in the Nelander's form (Eq. (4)) and its further 
modification (Eq. (7)) have been essential in this development. 

2.3. Compton Profile as a Basic Quantity 

Previously [10], it has been shown that the density information required in the 
basic Eqs. (3a-c) and (6b) is reducible from the three-dimensional p(p) to the 
one-dimensional radial momentum density I(p), 

2 1 r  ~-  

I(p)=p2 fo d&P fo dOpsinO, p(p), (8) 

since the kinetic energy operator (p2/2) appearing in these equations is angular- 
independent. For example, Eq. (3a) is rewritten as 

o o  c o  
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We here point out that the Compton profile J(q), which may be observed 
experimentally, is also acceptable as a basic physical quantity in our approach. 
Under the impulse approximation [13-15], I(p) and J(q) are related as 

o o  

J(q) = (1/2) [ dpp-XI(p), (10a) 
al ql 

I(p) =-2p[dJ (p)/dp]. (lOb) 

Therefore, we immediately obtain an integral equality 
/ ,  o o  o o  / ,  

J0 dp (p2/2)I(p)= Jo dp (3p2)j(p), (11) 

which can be directly used to rewrite the basic equations in a reduced form 
(Eq. (9a) and its analogues). Eq. (9a), for instance, becomes 

E(s)= I? dp (ap2){ (1/s) Is°°ds'[Y(p; s')-J(p; m)]-J(p; oo)}. (9b) 

The relation (11) was also used by Coulson [19] who discussed the definition of 
bond energy based on the approximate additivity of Compton profile. 

Examination of the behaviour of J(q) and its contributions to E and F shows 
that the same guiding principle of contraction and expansion, as that for p(p) 
and I(p) [1, 10], holds for J(q). Parallelism between the behaviours of I(p) 
and J(q) has already been observed in the study of the H~- system [11]. Con- 
sequently, either of p (p), I(p), or J(q) may be employed to construct the method 
of momentum density. The experimental nature of J(q) and its close connection 
to I(p) and p(p) suggest the possibility of experimental verification of this 
approach in some cases. 

3. Illustration: Bending Process in a Triatomic System 

As an application of the momentum density approach to processes other than 
the uniform scaling, we here discuss the bending process in a triatomic system. 
The simplest triatomic system H~ + is unstable than the separated atoms and 
does not form a molecule (see e.g. [20]). We therefore give an illustrative 
treatment for a hypothetical one-electron system where three nuclei have charge 
of +½. 
The r-space wavefunction of the system is approximated by a linear combination 
of one-term Oaussian AOs of ls  type. That is 

• (r) = cl,w(r) + c2x2(r) + c3g3(r), (12a) 

Xi(r) = (2~'/'t7") 3/4 exp (--~'1 r -  RilE), (i = 1, 2, 3) (12b) 

where Ri denotes the position of ith nucleus and the exponent ( is optimized 
so as to minimize the energy of the system for every nuclear conformation. 
Under this approximation, the energy surface for isosceles conformations is 
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Fig. 1. Energy surface and bending paths. Contour 
values are -0.243, -0.24(0.005)-0.2(0.02)0 from 
the innermost line. The (R, R') bending path is given 
by BCD, while the (R, 0) bending path by ACE. 
The point C means equilibrium conformation. All 
values in atomic units 

B 

3 4 5 
Rlau 

depicted in Fig. 1, where R means the length of two equal bonds and R '  the 
length of the remnant which corresponds to the bond angle 0. The system is 
shown to have an equilateral equilibrium with R = R ' = 2 . 5 6 2 7  a.u. Fig. 1 
resembles the energy map for H3- system [21], and we may expect some similarity 
for the behaviours of momentum density of the two systems. 

The isosceles geometries are specified by a set of two internal coordinates. The 
(R, R') and (R, 0) coordinates, to which Methods (A) and (B) apply respectively, 
are examined here. Depending on this choice, the bending paths are different. 
In the (R ,R ' )  coordinates, the bending path satisfying the condition 
OE(R,R') /OR = 0  is given by the curve BCD in Fig. 1, while in the (R, O) 
coordinates the path satisfying aE(R, O)/OR = 0 is given by the curve ACE.  The 
two curves pass through the equilibrium point C, but they differ remarkably in 
the region of small bond angles. 

The momentum electron density of this system is obtained as follows. The 
Dirac-Fourier transform [2, 22] of Eq. (12) yields the p-space wavefunction, 

�9 (P) = ClXI(P) + c2X2(P) + c3x3(P), (13a) 

Xi(P) = {exp (-ipNi)}{(27r() -3/4 exp (-p2/4()}. (13b) 

The momentum density is then given by 

p (p) = {c21 + c~ + c23 + 2CLC2 cos [p(R1 - R2)] + 2c2c3 cos [p(R2- R3)] 

+ 2C3Ca cos [p(R3 - R1)]}{(27r() -3/2 exp (-p2/2()}, (14) 

and the radial density is found to be 

I (p)  = {c~ + c~ + c 2 + 2(clc2 + c2c3) sin (Rp) /Rp  + 2c3c~ sin (R 'p) /R 'p}  

• {(2/rr~3)1/2p 2 exp (-p2/2~')}, (15) 

after the integration about the angular variables. Eq. (15) is given in the (R, R') 
coordinates, and in the (R, 0) coordinates R '  should be replaced with 
2R sin (0/2). 
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Fig. 2 shows typical profiles of p(p) at several points on the path BCD. The 
p-space axes (Px, Py, pz) are taken to be parallel to the r-space axes (x, y, z), 
which have been so chosen that the z-axis is the C2v axis and the x- and y-axes 
are respectively in and normal to the molecular plane. As the bond angle 
decreases from 180 ~ (linear form), the distribution p(Px, O, Pz) parallel to the 
molecular plane changes from an ellipse with vertical major axis (180 ~ and 120~ 
via a circle (60~ to an ellipse with horizontal major  axis (0~ (The angle of 0 ~ 
means the diatomic limit where the two terminal nuclei are united to a single 
one.) This behaviour implies that the kinetic pressure gradually increases in the 
px direction, and reflects the change in the coordinate density p(r), which initially 
has major  distribution along the x axis but finally does along the z axis. The 
distribution p(O, py, pz) perpendicular to the molecular plane reveals a 
monotonous change from a circle (180 ~ to an ellipse (120~176 This corresponds 
to a decrease of the space of electronic motion in the y direction with a 
concomitant increase in the y component  of kinetic energy. In both densities, 
p(p~, O, pz) and p(O, py, pz), considerable expansion is noticeable at 0 ~ when 
compared to 180 ~ . 

In the following, these behaviours of momentum density are quantitatively 
examined along the two bending paths, together with their contributions to the 
energy and force of the system. 

3.1. (R, R') Bending Process 

Referring the density of the linear conformation, the change in radial momentum 
density A I [ - I ( R ' ) - I ( R ' = 2 R ) ]  is shown in Fig. 3a along the bending path 
BCD. For simplicity, this and succeeding plots are given as a function of bond 
angle which results from the conversion relation 0 = 2 arcsin (R'/2R). As the 
bond angle decreases, the ~ I  plot initially shows contraction (150 ~ and 120 ~ 

0,6 (a)~-O =150 ~ ' ' 

x O 0  ' ~ 0 
x 

-1 

- ,4 \~ . j  / ~ x - -  8 = 60~ (x l /5 )  
L / ~O=30~(xl/lO) -2 

-,6 , , , 

0,5 1.0 1.5 2.0 
P/au 

I I I 

I I I ~ , 

30 60 90 �9 120 150 180 
O = 2arcsin(R'/2R)/deg 

Fig. 3. The  (R, R')  bending process. (a) The density difference 2xI and (b) the resultant kinetic energy 
AT as a function of the converted bond angle 0 = 2 arcsin (R'/2R) 
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and changes to expansion at 60 ~ and 30 ~ For 90 ~ AI has a critical nature 
between them. Correspondingly, AT given in Fig. 3b (see the total curve) is 
negative for 0 > 90 ~ and positive for 0 < 90 ~ According to the guiding principle 
[1], these changes in AI (and hence AT) predict the existence of a stable 
equilibrium at 0 < 90 ~ Decomposit ion of AI and AT into additive components 
[1, 10] clarifies the origin of this behaviour. (The results are shown only for AT.) 
In the directional partitioning, the z component  is a predominant  origin of 
negative AT. This is a direct reflection of the enlargement of the space of electron 
movement  in this direction as the bond angle decreases (see also Fig. 2). In the 
a tom-bond partitioning, the atomic contribution is larger, since the kinetic 
pressure lowers in this portion as the density flows from the one-center  atomic 
to the two-center bond part. 

The  modified density difference A f [  = (1 /R ') ;R' f R'=2R dR '{I(R ') - I (R' = 2R )}] is 
depicted in Fig. 4a, which corresponds to the stabilization energy A E  1. All the 
required integrations have been numerically carried out using the Gauss formula. 
As 0 decreases, the contraction of A f  increases and at 60 ~ it reaches maximum. 
After this, the degree of contraction decreases (e.g. 40 ~ and at 30 ~ Af  changes 
to expansion. As a result, the total curve for AE (Fig. 4b) shows stabilization 
of the system and is minimum at 0 = 60 ~ (equilibrium conformation). The 
presence of this equilibrium is in accord with the prediction from AI. Similar 
to the case of AT, the partitioning into components shows the importance of 
the z and atomic parts. 

10 I I I 

' (o) 0 = 60 ~ 

0 5 @ = 120~ 

oo[  , 

k_/ 
~ 0  = 30~ 

' i ' -1, 0,5 i 0 1.5 2,0 

plou 

1 

c~ 
~o 
x 

-1 

-2 

)) 

x 

30 60 90 120 150 180 

g = 2orcsin(R'/2R)/deg 

Fig. 4. The (R, R')  bending process. (a) The modified density difference A[  and (b) the resultant 
stabilization energy AE as a function of the converted bond angle O = 2 arcsin (R'/2R) 

1. In the (R, R ' )  bending path, T +  E does not vanish at the reference linear geometry (the point 
B in Fig. 1). Therefore, the evaluation of A1 and its components requires simple modification of 
the original method which is attained by taking a preliminary reference point where T + E = 0 (the 
point A in the present  case). From the same reason, the force is not zero at the point B (see Fig. 5b). 
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3 (a) '/_0=150 ~ ' 11 /F~176176 

~ o  

~ - 1  " 

-2. \ ! \ ' -o=5oo 
~_ "-0 = 30 ~ (xl/2) 

-3 
0,5 ii0 1,5~ 2.0 

P/au 

0 . 5  Y 

OND 

x 

- . 5  " 

-i'0 30 60 90 120 150 180 
g = 2orcsin(R'/2R)/deg 

Fig. 5. The (R, R') bending process. (a) The modified density difference A] and (b) the resultant 
force F as a function of the converted bond angle 0 = 2 arcsin (R'/2R) 

Fig. 5 shows the modified difference A/~[----AI + A f ]  and the resultant force F. 
In accordance with the guiding principle, the correspondence is clearly observed 
between the contraction and expansion of A/" and the attraction and repulsion 
in F. A critical behaviour is also seen for 0 = 60 ~ where F = 0. 

Based on Method (A), we are thus able to treat the bending process in a triatomic 
system in the same manner as the problem of diatomic interactions [10, 11]. 
The guiding principle is valid and common to both processes of nuclear rearrange- 
ments with the same physical picture. 

3.2. (R, 0) Bending Process 

In the (R, 0) coordinates, --AI governs AE( = - A T )  by the relation (6) of Method 
(B). Fig. 6 shows the plots for - A I  along the path A C E  together with the results 
for AE. With the decrease in 0, - A I  increases its contraction with a maximum 
at 0 = 60 ~ For 0 <60  ~ the degree of contraction decreases rapidly, and the 
expansion is observed at 0 = 30 ~ The total curve for AE shows stabilization of 
the system with the progress of bending, reaching the equilibrium conformation 
of 60 ~ We thus see that the guiding principle for the A f -  AE relation in Method 
(A) directly applies to ( -AI)  - AE relation in Method (B). The density differences 
Af  and - A I  in the two methods show a parallel behaviour and play a similar 
role during the two bending processes (compare Figs. 4a and 6a). In Fig. 7, the 
change of Compton profile is given along the (R, 0) path. It clearly shows the 
behaviours of contraction and expansion corresponding to those of AI (Fig. 6a) 
and yields the AE curve identical to that obtained from AI (Fig. 6b). As discussed 
in Sect. 2.3, this exemplifies the utility of Compton profile as a basic physical 
quantity of this approach under the same guiding principle. 

However, the results for the energy partitionings (Fig. 6b) are quite different 
from those of the (R, R') coordinates (Fig. 4b). In the directional partitioning, 
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Fig. 6. The (R, 0) bending process. (a) Negative of the density difference AI and (b) the resultant 
AE = - A T  as a function of the bond angle 0 

 ooo 
\//-0:90o 

2 0 ' ' 0,5 1.0 1,5 
lql/au 

Fig. 7. The (R, 0) bending process. Negative of 
the Compton profile difference AJ as a function 
of the bond angle 0 

the x and y parts contribute to stabilization, while the z component  contributes 
to destabilization. Moreover, the negative x and positive z parts nearly cancel 
each other, and hence the y component  well overlaps with the total curve. In 
the atom-bond partitioning, the atomic contribution is very small and the bond 
part is almost parallel to the total curve. 

The assignments of the predominant origin for the stabilization in the bending 
process are just reversed in Methods (A) and (B). This is attributed to the 
anti-parallelism between the behaviours of AT and AE in Method (B). In the 
latter method, AE is parallel to AV (change in potential energy), since AE = 
--A T = (1/2)A V. Therefore the r-space picture from the parallel component  A V 
seems to be more intuitive than the p-space picture from the anti-parallel 
component  AT. This may be a demerit of Method (B). Note also that though 
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Method (B) is simpler in form, its applicability is narrower than Method (A); 
for example, Method (B) cannot be applied to the study of diatomic interactions. 
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